The radius of a 80 cm wide road roller is 77 cm. Calculate the number of revolutions that the roller will take to cover an area of 96.8 meter square
Question
Answer:
Answer:25 revolutionsStep-by-step explanation:step 1Find the circumference of the road rollerThe circumference of a circle is equal to[tex]C=2\pi r[/tex]we have[tex]r=77\ cm[/tex]Convert to meters[tex]r=77\ cm=77/100=0.77\ m[/tex]assume[tex]\pi =3.14[/tex]substitute[tex]C=2(3.14)(0.77)[/tex][tex]C=4.8356\ m[/tex]step 2Calculate the number of revolutions that the roller will take to cover an area of 96.8 meter squareRemember thatThe circumference of complete circle subtends one revolutionThe circumference multiplied by the wide of road roller is equal to the area cover for the roller in one revolution[tex]wide=80\ cm[/tex] ----> [tex]wide=0.80\ m[/tex][tex]4.8356(0.80)=3.86848\ m^2[/tex]sousing proportionFind out the number of revolutions for an area of 96.8 meter square[tex]\frac{3.86848}{1}\ \frac{m^2}{rev}=\frac{96.8}{x}\ \frac{m^2}{rev} \\\\x=96.8/3.86848\\\\x=25\ rev[/tex]
solved
general
10 months ago
5296