Triangle GHI is rotated 90 degrees clockwise and then reflected over the y-axis. Which congruency statement is true?

Question
Answer:
The answer for this question is C. triangle GHI = triangle G'' H'' I''

Explanation: 

Triangle 1:
Pt I: (-4,-2)
Pt G: (-1, -3)
Pt.H: (-2,-5)
length of Line GI = sqrt((-1--4)^2+(-3--2)^2) = sqrt (9+1) = sqrt (10)
length of Line HI = sqrt((-2--4)^2+(-5--2)^2) = sqrt (4+9) = sqrt (13)
length of Line GH = sqrt((-2--1)^2+(-5--3)^2) = sqrt (1+4) = sqrt (5)

Triangle2:
Point G': (-3,1)
Point H': (-5,2)
Point I': (-2,4)

length of Line G'H' = sqrt((-5--3)^2+(2-1)^2) = sqrt (4+1) = sqrt (5)
length of Line G'I' = sqer((-2--3)^2 + (4-1)^2) = sqer (1 + 9) = sqrt (10)
length of Line H'I' = sqrt ((-2--5)^2 + (4-2)^2) = sqrt (9 + 4) = sqrt (13)

TRIANGLE 3:
Point G"
Point H"
POint i"

ame for triangle 3.

line GH = G'H' = G"H"
line GI = G'I' = G"I"
line HI = H'I' = H"I"

Therefore the answer is GHI = Triangle G'H'I' = Triangle G"H"I"
solved
general 11 months ago 8807