The savings account offering which of these APRs and compounding periods offers the best APY? 4.0784% compounded monthly4.0798% compounded semiannually4.0730% compounded daily

Question
Answer:
[tex]\bf \qquad \qquad \textit{Annual Yield Formula} \\\\ ~~~~~~~~~~~~\textit{4.0784\% compounded monthly}\\\\ ~~~~~~~~~~~~\left(1+\frac{r}{n}\right)^{n}-1 \\\\ \begin{cases} r=rate\to 4.0784\%\to \frac{4.0784}{100}\to &0.040784\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{monthly, thus twelve} \end{array}\to &12 \end{cases} \\\\\\ \left(1+\frac{0.040784}{12}\right)^{12}-1\\\\ -------------------------------\\\\ ~~~~~~~~~~~~\textit{4.0798\% compounded semiannually}\\\\ [/tex]

[tex]\bf ~~~~~~~~~~~~\left(1+\frac{r}{n}\right)^{n}-1 \\\\ \begin{cases} r=rate\to 4.0798\%\to \frac{4.0798}{100}\to &0.040798\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{semi-annually, thus twice} \end{array}\to &2 \end{cases} \\\\\\ \left(1+\frac{0.040798}{2}\right)^{2}-1\\\\ -------------------------------\\\\ [/tex]

[tex]\bf ~~~~~~~~~~~~\textit{4.0730\% compounded daily}\\\\ ~~~~~~~~~~~~\left(1+\frac{r}{n}\right)^{n}-1 \\\\ \begin{cases} r=rate\to 4.0730\%\to \frac{4.0730}{100}\to &0.040730\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{daily, thus 365} \end{array}\to &365 \end{cases} \\\\\\ \left(1+\frac{0.040730}{365}\right)^{365}-1[/tex]
solved
general 10 months ago 5481