derivative of the (sqrt of t/4t-3)
Question
Answer:
Answer:[tex]\displaystyle \frac{dy}{dt} = \frac{-3}{2(4t- 3)^2\sqrt{\frac{t}{4t - 3}}}[/tex]General Formulas and Concepts:CalculusDifferentiationDerivativesDerivative NotationDerivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]Basic Power Rule:f(x) = cxⁿf’(x) = c·nxⁿ⁻¹Derivative Rule [Quotient Rule]: [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]Step-by-step explanation:Step 1: DefineIdentify[tex]\displaystyle y = \sqrt{\frac{t}{4t - 3}}[/tex]Step 2: DifferentiateBasic Power Rule [Derivative Rule - Chain Rule]: [tex]\displaystyle y' = \frac{1}{2\sqrt{\frac{t}{4t - 3}}} \cdot \frac{d}{dt} \bigg[ \frac{t}{4t - 3} \bigg][/tex]Derivative Rule [Quotient Rule]: [tex]\displaystyle y' = \frac{1}{2\sqrt{\frac{t}{4t - 3}}} \cdot \frac{(t)'(4t - 3) - t(4t - 3)'}{(4t - 3)^2}[/tex]Basic Power Rule [Derivative Properties]: [tex]\displaystyle y' = \frac{1}{2\sqrt{\frac{t}{4t - 3}}} \cdot \frac{(4t - 3) - 4t}{(4t - 3)^2}[/tex]Simplify: [tex]\displaystyle y' = \frac{-3}{2(4t- 3)^2\sqrt{\frac{t}{4t - 3}}}[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)Unit: Differentiation
solved
general
11 months ago
5262