Let the vectors be u=(-1,0,2) , v=(0,2,-3) , w=(2,2,3) Calculate the following expressions a)<u,w> b) &lt;2u- 5v,3w&gt;

Question
Answer:
Let's calculate the given expressions involving the vectors u, v, and w: a) u • v (dot product of u and v): u • v = (-1 * 0) + (0 * 2) + (2 * (-3)) = 0 - 0 - 6 = -6 b) <2u - 5v, 3w> (scalar triple product): <2u - 5v, 3w> = (2u - 5v) • 3w Now, calculate the individual components of 2u - 5v: 2u - 5v = (2 * (-1), 2 * 0, 2 * 2) - (5 * 0, 5 * 2, 5 * (-3)) = (-2, 0, 4) - (0, 10, -15) = (-2, -10, 19) Now, take the dot product of (-2, -10, 19) and 3w: (-2, -10, 19) • 3w = (-2 * 3, -10 * 3, 19 * 3) • (3 * 2, 3 * 2, 3 * 3) = (-6, -30, 57) • (6, 6, 9) Now, calculate the dot product: (-6, -30, 57) • (6, 6, 9) = (-6 * 6) + (-30 * 6) + (57 * 9) = -36 - 180 + 513 = 297 So, the scalar triple product <2u - 5v, 3w> is 297.
solved
general 11 months ago 2713