please help condense into a single logarithm:
Question
Answer:
The first step for solving this expression is to write the number below ㏒ in exponential form.㏒[tex] _{ 3^{2} } [/tex](x) + 2㏒[tex] _{ 3^{2} } [/tex](y) - ㏒[tex] _{2} [/tex](z)
Using ㏒[tex] _{a^{y} } [/tex](b) = [tex] \frac{1}{y} [/tex] × ㏒[tex] _{a} [/tex](b),, transform the expressions with ㏒[tex] _{ 3^{2} } [/tex].
[tex] \frac{1}{2} [/tex] × ㏒[tex] _{3} [/tex](x) + [tex] \frac{1}{2} [/tex] × ㏒[tex] _{3} [/tex](y) - ㏒[tex] _{2} [/tex](z)
Lastly,, reduce the numbers with 2 to find your final answer.
[tex] \frac{1}{2} [/tex] × ㏒[tex] _{3} [/tex](x) + ㏒[tex] _{3} [/tex](y) - ㏒[tex] _{2} [/tex](z)
This means that the correct answer to your question is [tex] \frac{1}{2} [/tex] × ㏒[tex] _{3} [/tex](x) + ㏒[tex] _{3} [/tex](y) - ㏒[tex] _{2} [/tex](z).
Let me know if you have any further questions.
:)
solved
general
10 months ago
2007