In kite WXYZ, m∠ZWY=43°and m∠XYW=12°. What is m∠WXY?Enter your answer in the box.photo:
Question
Answer:
Answer: [tex]\angle WXY=125^{\circ}[/tex]Explanation: Since, a kite has one pair of congruent angles and its main diagonal bisects its opposite angles.Therefore, According to the given figure, [tex]\angle WXY=\angle WZY[/tex] And, WY is the main diagonal which bisects angles ZWX and XYZ.So, [tex]\angle ZWX =2\times \angle ZWY= 2\times 43^{\circ}=86^{\circ}[/tex]And, [tex]\angle XYZ =2\times \angle XYW= 2\times 12^{\circ}=24^{\circ}[/tex]Since, Sum of all angles of a quadrilateral is equal to [tex]360^{\circ}[/tex]Therefore, [tex]\angle WXY+\angle WZY+\angle XYZ+\angle ZWX=360^{\circ}[/tex]⇒[tex]2\times \angle WXY+ 86^{\circ}+24^{\circ}=360^{\circ}[/tex]⇒[tex]2\times \angle WXY=360^{\circ}-110^{\circ}=250{\circ}[/tex]⇒ [tex]\angle WXY=125^{\circ}[/tex]
solved
general
10 months ago
1091