Given the functionf ( x ) = x^2 + 7 x + 10/ x^2 + 9 x + 20 Describe where the function has a vertical asymptote and how you found your answer. Remember that an asymptote is represented by an equation of a line and not just a single value.
Question
Answer:
x = -4 is a vertical asymptote for the function.Explanation:The graph of [tex]y=f(x)[/tex] is a vertical has an asymptote at [tex]x=a[/tex] if at least one of the following statements is true:[tex]1) \ \underset{x\rightarrow a^{-}}{lim}f(x)=\infty\\ \\ 2) \ \underset{x\rightarrow a^{-}}{lim}f(x)=-\infty \\ \\ 3) \ \underset{x\rightarrow a^{+}}{lim}f(x)=\infty \\ \\ 4) \ \underset{x\rightarrow a^{+}}{lim}f(x)=\infty[/tex]The function is:[tex]f(x)=\frac{x^2+7x+10}{x^2+9x+20}[/tex]First of all, let't factor out:[tex]f(x)=\frac{x^2+5x+2x+10}{x^2+5x+4x+20} \\ \\ f(x)=\frac{x(x+5)+2(x+5)}{x(x+5)+4(x+5)} \\ \\ f(x)=\frac{(x+5)(x+2)}{(x+5)(x+4)} \\ \\ f(x)=\frac{(x+2)}{(x+4)}, \ x\neq Β 5[/tex]From here:[tex]\bullet \ When \ x \ approaches \ -4 \ on \ the \ right: \\ \\ \underset{x\rightarrow -4^{+}}{lim}\frac{(x+2)}{(x+4)}=? \\ \\ \underset{x\rightarrow -4^{+}}{lim}\frac{(-4^{+}+2)}{(-4^{+}+4)} \\ \\ \\ The \ numerator \ is \ negative \ and \ the \ denominator \\ is \ a \ small \ positive \ number. \ So: \\ \\ \underset{x\rightarrow -4^{+}}{lim}\frac{(x+2)}{(x+4)}=-\infty[/tex][tex]\bullet \ When \ x \ approaches \ -4 \ on \ the \ left: \\ \\ \underset{x\rightarrow -4^{-}}{lim}\frac{(x+2)}{(x+4)}=? \\ \\ \underset{x\rightarrow -4^{-}}{lim}\frac{(-4^{-}+2)}{(-4^{-}+4)} \\ \\ \\ The \ numerator \ is \ a \ negative \ and \ the \ denominator \\ is \ a \ small \ negative \ number \ too. \ So: \\ \\ \underset{x\rightarrow -4^{-}}{lim}\frac{(x+2)}{(x+4)}=+\infty[/tex]Accordingly:[tex]x=-4 \ is \ a \ vertical \ asymptote \ for \\ \\ f(x)=\frac{x^2+5x+2x+10}{x^2+5x+4x+20}[/tex]Learn more:Vertical and horizontal asymptotes:
solved
general
10 months ago
6734