Flying against the wind, an airplane travels 5760 kilometers in 6 hours. Flying with the wind, the same plane travels 6300 kilometers in 5 hours. What is the rate of the plane in still air and what is the rate of the wind?

Question
Answer:
Speed of plane = 1110 kmphSpeed of wind = 150 kmphStep-by-step explanation:Let the speed of plane be p and speed of wind be w.Flying against the wind, an airplane travels 5760 kilometers in 6 hours.Here             Speed = (p-w) kmph             Time = 6 hours             Distance = 5760 kmph             Distance = Speed x Time             5760 = (p-w) x 6                p-w = 960 -----eqn 1  Flying with the wind, the same plane travels 6300 kilometers in 5 hours.Here             Speed = (p+w) kmph             Time = 5 hours             Distance = 6300 kmph             Distance = Speed x Time             6300 = (p+w) x 5                p+w = 1260 -----eqn 2     eqn 1 + eqn 2                 p-w + p +w =  960 + 1260                   2p = 2220                     p = 1110 kmphSubstituting in eqn 2                 1110 + w = 1260                          w = 150 kmphSpeed of plane = 1110 kmphSpeed of wind = 150 kmph
solved
general 10 months ago 7993