How many milliliters of concentrated hydrochloric acid solution (36% hydrochloric acid by mass, density 1.18 g/mL) are needed to produce 4.7 L of a solution that has a pH of 2.08?
Question
Answer:
To determine how many milliliters of concentrated hydrochloric acid solution are needed to produce 4.7 L of a solution with a pH of 2.08, we'll need to use the concept of pH and the properties of the concentrated hydrochloric acid.
First, let's calculate the concentration of H+ ions in a solution with a pH of 2.08. The pH is defined as:
pH = -log[H+]
So, we can rearrange this equation to find [H+]:
[H+] = 10^(-pH)
[H+] = 10^(-2.08)
[H+] β 0.00831 M (moles per liter)
Now, we want to prepare 4.7 liters of a solution with this concentration of H+ ions using concentrated hydrochloric acid solution (36% hydrochloric acid by mass, density 1.18 g/mL). First, we need to find the molar mass of hydrochloric acid (HCl):
HCl = 1 (for hydrogen) + 35.5 (for chlorine) = 36.5 g/mol
Since the concentrated hydrochloric acid solution is 36% hydrochloric acid by mass, it means there are 36 grams of HCl in 100 grams of the solution.
Now, let's calculate the molarity of the concentrated hydrochloric acid solution:
Molarity = (grams of solute / molar mass) / (volume in liters)
Molarity = (36 g / 36.5 g/mol) / (1 L)
Molarity β 0.986 M
Now, we can use the formula:
C1V1 = C2V2
where:
C1 = initial concentration (0.986 M)
V1 = initial volume (unknown, in milliliters)
C2 = final concentration (0.00831 M)
V2 = final volume (4.7 L)
Let's solve for V1:
0.986 M * V1 = (0.00831 M) * (4.7 L)
V1 β (0.00831 M * 4.7 L) / 0.986 M
V1 β 0.0396 L
Now, we need to convert this volume from liters to milliliters:
1 liter = 1000 milliliters
So,
V1 β 0.0396 L * 1000 mL/L β 39.6 mL
Therefore, you would need approximately 39.6 milliliters of concentrated hydrochloric acid solution to produce 4.7 liters of a solution with a pH of 2.08.
solved
general
11 months ago
657