please explain, but not to wordy
Question
Answer:
Solving the expression [tex]\frac{x^2-12x+32}{x^2-10x+16}.\frac{6x-30}{25-5x}[/tex] we get [tex]-\frac{6(x-4)}{5(x-2)}[/tex]Step-by-step explanation:Solving the expression:[tex]\frac{x^2-12x+32}{x^2-10x+16}.\frac{6x-30}{25-5x}[/tex]Solving the expression:We will find factors of the quadratic terms:[tex]x^2-12x+32\\=x^2-8x-4x+32\\=x(x-8)-4(x-8)\\=(x-4)(x-8)[/tex]So, factors of [tex]x^2-12x+32[/tex] are [tex](x-4)(x-8)[/tex][tex]x^2-10x+16\\=x^2-8x-2x+16\\=x(x-8)-2(x-8)\\=(x-2)(x-8)[/tex]So, factors of [tex]x^2-10x+16[/tex] are [tex](x-2)(x-8)[/tex]Placing factors instead of quadratic equation and finding common terms:[tex]\frac{(x-4)(x-8)}{(x-2)(x-8)}.\frac{6(x-5)}{-5(x-5)}[/tex]Cancelling the common terms:[tex]\frac{(x-4)}{(x-2)}.\frac{6}{-5}\\-\frac{6(x-4)}{5(x-2)}[/tex]So, Solving the expression [tex]\frac{x^2-12x+32}{x^2-10x+16}.\frac{6x-30}{25-5x}[/tex] we get [tex]-\frac{6(x-4)}{5(x-2)}[/tex]Keywords: Solving FractionsLearn more about Solving Fractions at:brainly.com/question/2456302
brainly.com/question/4390083
brainly.com/question/2456302
#learnwithBrainly
solved
general
10 months ago
8163